Computer Science Research

CS 197 | Stanford University | Michael Bernstein
cs197.stanford.edu
What is computer science research?
STANFORD, Calif. — You may think you can find almost anything on the Internet.

But even as images and video rapidly come to dominate the Web, search engines can ordinarily find a given image only if the text entered by a searcher matches the text with which it was labeled. And the labels can be unreliable, "fuzzy" instead of "rabbit" or simply nonexistent.

To eliminate those limits, scientists will need to create a new generation of visual search technologies — or else, as the Stanford computer scientist Fei-Fei Li recently put it, the Web will be in danger of "going dark."

Now, along with computer scientists from Princeton, Dr. Li, 36, has built the world’s largest visual database in an effort to mimic the human vision system. With more than 14 million labeled objects, from obsidian to orangutans to ocelots, the database has become a vital resource for computer vision researchers.
What will this course achieve?
Your experience in CS 197

Work on bleeding-edge topics now, rather than in two years

Fashion a project that you can publish as a work-in-progress or workshop paper

Find an onramp to research in the department, and to research and advanced development in industry
Today

What is research, vs. industry?
How does this course work?
Research mindset
Computer science research

What is the goal of research?
Why has it driven major innovations in computing?
What separates research from advanced development?
A Tale of Three Turing Awards
Hennessy and Patterson: RISC

Computer architecture was increasing in complexity, in order to enable more and more advanced computation.

Everyone thought that increasingly powerful processors needed increasingly complicated instruction sets to take advantage of them.
Hennessy and Patterson: RISC

“No, let’s do it this way instead:” have a very simple instruction set. That way you can compare performance, optimize, and prevent errors.

This became known as Reduced Instruction Set Computer (RISC). It led to a sea change in architectures, and the founding of multiple major silicon valley companies.
Engelbart: interactive computing

When computers originated, they were used for, well, computing: calculating mathematical functions.

This meant that computers were seen as most appropriate for slow, batch interaction, shared by entire teams.
Engelbart: interactive computing

“No, let’s do it this way instead:” computing should be used as a tool for thought. We must move from batch-style computing to interactive computing.

His result was the “Mother of All Demos”: mouse, hypertext, bitmapped screens, collaborative software, and more.

This led to Xerox Star. Steve Jobs saw it, was wow’ed, and infused the ideas into the Mac.
The idea of neural networks had been around for fifty years, but unsuccessful. Major AI figures had trashed it, even proving that early versions had very limited expressiveness.

Instead, machine learning was based on other models, for example the support vector machine and graphical models. Neural networks did not perform well.
LeCun, Hinton, Bengio: deep learning

“No, let’s do it this way instead:” these networks learn extremely complex functions, so they need much more data than existing machine learning approaches, GPUs to train, and algorithms to enable them to learn more effectively.

Around 2010, these models began smashing records in speech and image recognition. They are now foundational to ML.
Not all research wins Turing Awards. But…

It all follows this same formula —

An implicit assumption: Industry and other researchers all thought one way about a problem

“No, let’s do it this way instead:” The researcher offered a new perspective that nobody had ever considered or made feasible before. They proved out their idea as the better approach.
And now, a definition.

Research introduces a fundamental **new idea** into the world.

Examples:

- Simple instruction sets for complex computer architecture
- Computing that is interactive, not batch
- Algorithms needed to make deep learning effective

These ideas did not exist in any mature or well-articulated way before their creators developed them.

If the idea is already in the world, for example published by someone else, it is not considered **novel**, and thus not research.
Before: small computer vision datasets
After: YUGE computer vision dataset, and algorithms to utilize it

Before: programmers manually reserve resources for cloud computing
After: programmers provide needs, software allocates resources

Before: we think web tracking is isolated to the intended site
After: it’s much leakier than we realized

Before: underwater robots should look and feel like boats
After: humanoid underwater robotics

Before: programmers manually reserve resources for cloud computing
After: software allocates resources

Before: programmers manually reserve resources for cloud computing
After: software allocates resources
Research creates industry

- Google: PageRank algorithm
- Stanford University Network workstation (SUNet)
- sgi: Computer graphics architectures
- coursera: Online education
- VMware: Computer virtualization
Industry and research
Industry vs. research

What makes other start-ups and industry different than research?

If the core idea already exists, but needs to be refined in order to see success...it might be important, but it’s not research.
Industry vs. research

Companies can and do engage in development that is research…

- MapReduce and Spanner at Google
- Kinect at Microsoft

…but typically companies are working to scale out ideas that exist.

Landay, 2000s:
- activity sensing
 Credit because he developed the concept and popularized it

Apple, 2010s:
- Apple Watch
 Credit because they engineered it to work and launched it
Implication: by doing research, you are living about 15 years in the future.
(An incomplete list of) research areas in computer science
Flavors of CS research

Computer science is a field held together by a shared phenomenon of interest: computing.

This sets it apart from some other fields, which are drawn together by a shared theory or shared methodology. While this is a simplification, it is a helpful first cut:

- Psychology: methodology of randomized experiment
- Math: methodology of formal proof
- Anthropology: methodology of participant observation
- Sociology: shared theories — functionalist perspective, conflict perspective, symbolic interactionist perspective
Architecture
Artificial intelligence
Computational biology
Computer graphics
Computer security
Computer systems
Computer vision
Data science
Education
Human-computer interaction
Machine learning
Natural language processing
Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Topic: artificial intelligence

Architecture
Artificial intelligence
Computational biology
Computer graphics
Computer security
Computer systems
Computer vision
Data science
Education
Human-computer interaction
Machine learning
Natural language processing
Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Topic: computer systems

Architecture
Artificial intelligence
Computational biology
Computer graphics

Computer security
Computer systems
Computer vision
Data science
Education

Human-computer interaction
Machine learning
Natural language processing

Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Topic: theory

Architecture
Artificial intelligence
Computational biology
Computer graphics

Computer security
Computer systems
Computer vision
Data science
Education

Human-computer interaction

Machine learning
Natural language processing
Networking
Operating/distributed systems

Programming systems/verification
Robotics

Theory
Method: engineering

Architecture
Artificial intelligence
Computational biology

Computer graphics
Computer security
Computer systems
Computer vision

Data science
Education

Human-computer interaction
Machine learning
Natural language processing

Networking
Operating/distributed systems
Programming systems/verification

Robotics
Theory
Method: probability and modeling

Architecture
Artificial intelligence
Computational biology
Computer graphics
Computer security
Computer systems
Computer vision
Data science
Education
Human-computer interaction
Machine learning
Natural language processing
Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Method: formal reasoning and proof

Architecture
Artificial intelligence
Computational biology
Computer graphics
Computer security
Computer systems
Computer vision
Data science
Education

Human-computer interaction
Machine learning
Natural language processing
Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Method: design

Architecture
Artificial intelligence
Computational biology
Computer graphics
Computer security
Computer systems
Computer vision
Data science
Education

Human-computer interaction
Machine learning
Natural language processing
Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Method: empirical measurement and hypothesis testing

- Architecture
- Artificial intelligence
- **Computational biology**
- Computer graphics
- Computer security
- Computer systems
- Computer vision
- **Data science**
- Education

Human-computer interaction

- Machine learning
- Natural language processing
- Networking
- Operating/distributed systems
- Programming systems/verification
- Robotics
- Theory
Research mindset
Research is different than your usual coursework.

Coursework tends to be very clearly defined. Research tends to be exploratory and iterative.
“I like” from summer research:

“The free-form structure of our project”

“The freedom to choose the questions and methods I find interesting”

“The independence I got in establishing a research direction”

“That I have had the opportunity to do a lot of self guided research and reading. I feel very free to shape parts of my learning and research experience.”

“I wish” from summer research:

“That there was more structure or well-defined expectations.”

“I had a clearer idea or more deliverables and felt the barrier of being unfamiliar with certain parts of the project or coming on late less.”

"I had been able to narrow my scope a little earlier"

Research is a new and different skill. Embrace and navigate through the uncertainty.
How this course works
Course application

For this initial offering of the course, we will have space for twelve students per section: AI, HCI, and Systems.

Half of the positions were allocated last Spring, the other half will be allocated based on application: http://hci.st/cs197app

Due one hour after class today, 6:30pm

Decisions + waitlist announced tonight

Sections start tomorrow morning

(Also, I am on sabbatical in the 2020-2021 academic year, so course may or may not be offered in Fall 2020.)
Learning goals

Execute a first research project at the scale that can be submitted to a workshop or work-in-progress at a top-tier conference.

Understand the major research topics currently active in your area. Be able to read a research paper and perform a literature review in that area.

Apply vectoring and velocity skills for navigating the open-ended nature of research.

Design and execute an appropriate evaluation of your method.

Write a paper and engage in the peer review process.
Is this course right for me?

CS 197 is the best fit if you’re…

Interested in working on bleeding-edge problems before you’re a senior or coterm
Done with CS 106B and ideally taking CS 107

It’s not the best fit if you’re…

Looking for a research area that we don’t cover yet
A senior or coterm with the coursework to enable you access to research opportunities already
Research project

This class is structured around a quarter-long research project. The project is completed in groups of three within a section.

TAs will offer project options tailored to each section and the students’ interests within the section. These projects are designed to be accessible to you, of interest to the research community, and achievable within the timeline of the course.

“I have my own idea!”: mention it to your TA. We are unlikely to bend given those goals of accessibility, broader research interest, and achievability, but want to hear your ideas — it’s possible!
Groups and projects

Form project teams and align with topics in section during Week 2. You can pick your groups, and your group can pick a project from a prepared list of options.

You will have some freedom to evolve the shape of that project…

…but we chose it to scope your project to something we know we can advise well, and that we think you can finish by the end of the quarter.
Assignments

Assignments offer waypoints in support of the project.

Assignment 1 (individual): learning about the project area, and learning how to read a paper

Assignment 2: literature review

Assignment 3: project proposal draft

Assignment 4: experiments and evaluation

Assignment 5: draft paper and peer review
Sections

We have three sections: HCI, Systems, and AI. Each section is led by a PhD student who (1) is doing research in that area, and (2) has been selected for their mentorship skills.

- **HCI** (Griffin Dietz): Fridays 9:30am-10:20am, STLC 105
- **Systems** (Kexin Rong): Thursdays 9:30am-10:20am, STLC 104
- **AI** (Daniel Kang): Thursdays 10:30am-11:20am, Lathrop 292

TAs, introduce yourselves!

When you are admitted to the class, you are admitted to a particular section. There are twelve spots per section.
What after CS 197?

Our goal is for CS 197 to be an onramp for you to research in Computer Science. We will:

- Have opportunities for you to continue to work on the project if desired through CS 197A in future quarters, where you continue to meet with your sectionmates.

- Perform outreach to faculty in CS or at Stanford to help introduce you so you can work on research projects after demonstrating excellence here.

- Support you in submitting your work to flagship conferences, and connect you with funding opportunities to travel to present the work.
Questions?
Computer Science Research

Slide content shareable under a Creative Commons Attribution-NonCommercial 4.0 International License.